PiPlanter 2 | Progress Update

I’m almost done with a very stable version of the Python code running the PiPlanter. There are many specific differences between this version of the python code and the version I wrote and implemented last summer, but the main one is that I tried to write functions for pretty much every task I wanted to do, and made each routine much more modular instead of one long line after line block to do each day. This took significantly longer to do (thus the lack of updates, sorry) but is much more expandable going forward. Below is the new version of the code, but by no means am I an expert programmer. The following code seems to work very well for what I want it to do.

import MySQLdb
from datetime import datetime
import time
from time import sleep
import os
import sys
import spidev
import RPi.GPIO as GPIO
import tweepy
import logging
logging.basicConfig()
from apscheduler.scheduler import Scheduler
import subprocess

def ConsoleDebug(input):
	debug = '[' + datetime.now().strftime("%m-%d-%Y_%I-%M-%S-%p") + '] Debug: ' + input
	print debug
	file = open(str(os.getcwd()) + "/log.txt", "a")
	file.write(debug + "\n")
	file.close()

def FirstTimeSetup():	
	global cycle
	
	ConsoleDebug('---------------- NEW INSTANCE OF PIPLANTER ----------------')
	
	MySQL_Commands = {1 : 'CREATE DATABASE IF NOT EXISTS PiPlanter_DB', 2: "GRANT ALL ON `PiPlanter_DB`.* TO 'piplanter'@'localhost' IDENTIFIED BY 'password'", 3: 'USE PiPlanter_DB' }
	for i in MySQL_Commands.itervalues():
		ConsoleDebug('MYSQL COMMAND: ' + i)
		cursor.execute(i)

	MySQLTableSetup(False,'Daily',True)
	VisualLocationSetup(True,'dontcare')
	ConsoleDebug('Setup Complete')
	cycle = 0

def MySQLTableSetup(full,kind,first):

	global MySQL_Tables
		
	now = datetime.now().strftime("%m_%d_%Y__%I_%M_%S%p")
	
	if first == True:
		MySQL_Tables = { 'MySQLTable_Daily' : 'DailyTable' + now, 'MySQLTable_Weekly' : 'WeeklyTable' + now, 'MySQLTable_Monthly' : 'MonthlyTable' + now}		
		if full == False:
			CreateTables = {0: "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))", 1 : "CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))" , 2 : "CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))"}
			for i in CreateTables.itervalues():
				ConsoleDebug('MYSQL COMMAND: ' + i)
				cursor.execute(i)
		if full == True:
			CreateTables = {0: "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))", 1:"CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" , 2:"CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))" }
			for i in CreateTables.itervalues():
				ConsoleDebug('MYSQL COMMAND: ' + i)
				cursor.execute(i)
				
	elif first == False:
		if kind == 'Daily':
			ConsoleDebug('Daily Database Name Has Been Updated')
			MySQL_Tables['MySQLTable_Daily'] = 'DailyTable_' + now
			ConsoleDebug(MySQL_Tables['MySQLTable_Daily'])
			if full == False:
				CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))"
			elif full  == True:
				CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Daily'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))"
		elif kind == 'Weekly':
			ConsoleDebug('Daily Database Name Has Been Updated')
			MySQL_Tables['MySQLTable_Weekly'] = 'WeeklyTable_' + now
			ConsoleDebug(MySQL_Tables['MySQLTable_Weekly'])
			if full == False:
				CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))"
			elif full  == True:
				CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Weekly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))"
		elif kind == 'Monthly':
			ConsoleDebug('Daily Database Name Has Been Updated')
			MySQL_Tables['MySQLTable_Monthly'] = 'MonthlyTable_' + now
			ConsoleDebug(MySQL_Tables['MySQLTable_Monthly'])
			if full == False:
				CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))"
			elif full  == True:
				CreateTable = "CREATE TABLE " + MySQL_Tables['MySQLTable_Monthly'] + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))"		
		
		ConsoleDebug('MYSQL: ' + CreateTable)
		cursor.execute(CreateTable)
	
	ConsoleDebug('Current Daily: ' + MySQL_Tables['MySQLTable_Daily'])
	ConsoleDebug('Current Weekly: ' + MySQL_Tables['MySQLTable_Weekly'])
	ConsoleDebug('Current Monthly: ' + MySQL_Tables['MySQLTable_Monthly'])

def VisualLocationSetup(first,kind):
	global VisualLocation
	
	now = datetime.now().strftime("%m_%d_%Y__%I_%M_%S%p")
	
	runninglocation = str(os.getcwd())
	if first == True:
		
		ConsoleDebug('Creating Video Directory')
		if not os.path.exists(runninglocation + '/videos/'):
			os.makedirs(runninglocation + '/videos/')
			ConsoleDebug('Video Directory Created')
		else:
			ConsoleDebug('Video Directory Already Exists')

		ConsoleDebug('Creating Daily Video Directory')
		if not os.path.exists(runninglocation + '/videos/dailys/'):
			os.makedirs(runninglocation + '/videos/dailys/')
		else:
			ConsoleDebug('Daily Video Directory Already Exists')
			
		ConsoleDebug('Creating Image Directory')
		if not os.path.exists(runninglocation + '/images/'):
			os.makedirs(runninglocation + '/images/')
		else:
			ConsoleDebug('Image Directory Already Exists')
		
		ConsoleDebug('Creating Daily Image Directory')
		if not os.path.exists(runninglocation + '/images/dailys/'):
			os.makedirs(runninglocation + '/images/dailys/')
		else:
			ConsoleDebug('Daily Image Directory Already Exists')
			
		ConsoleDebug('Creating Graph Directory')
		if not os.path.exists(runninglocation + '/graphs/'):
			os.makedirs(runninglocation + '/graphs/')
		else:
			ConsoleDebug('Graph Directory Already Exists')
		
		ConsoleDebug('Updating All Current Visual Directories')
		VisualLocation = {'CurrentImageDirectory' : runninglocation + '/images/dailys/' + 'CurrentImageDirectory_' + now + '/' , 'CurrentVideoDirectory' : runninglocation + '/videos/dailys/' + 'CurrentVideoDirectory_' + now + '/' , 'CurrentGraphDirectory' : runninglocation + '/graphs/' + 'CurrentGraphDirectory_' + now + '/' }
				
		for i in VisualLocation.itervalues():
			ConsoleDebug('Making Directory: ' + i)
			os.makedirs(i)
	
	if first == False:
		ConsoleDebug('Updating Location Of ' + kind + ' Directory')
		if kind == 'Image':
			VisualLocation['CurrentImageDirectory'] = runninglocation + '/images/dailys/' + 'CurrentImageDirectory_' + now + '/'
			ConsoleDebug('Making Directory: ' + VisualLocation['CurrentImageDirectory'])
			os.makedirs(VisualLocation['CurrentImageDirectory'])
			
		elif kind == 'Video':
			VisualLocation['CurrentVideoDirectory'] = runninglocation + '/videos/dailys/' + 'CurrentVideoDirectory_' + now + '/'
			ConsoleDebug('Making Directory: ' + VisualLocation['CurrentVideoDirectory'])
			os.makedirs(VisualLocation['CurrentVideoDirectory'])
			
		elif kind == 'Graph':
			VisualLocation['CurrentGraphDirectory'] = runninglocation + '/graphs/' + 'CurrentGraphDirectory_' + now + '/'
			ConsoleDebug('Making Directory: ' + VisualLocation['CurrentGraphDirectory'])
			os.makedirs(VisualLocation['CurrentGraphDirectory'])
			
	
	ConsoleDebug('Current Image Directory' + VisualLocation['CurrentImageDirectory'])
	ConsoleDebug('Current Video Directory' + VisualLocation['CurrentVideoDirectory'])
	ConsoleDebug('Current Graph Directory' + VisualLocation['CurrentGraphDirectory'])
	
	return 0

#this function can be used to find out the ADC value on ADC 0
def ReadADC0(adcnum_0): 
    if adcnum_0 > 7 or adcnum_0 < 0:
        return -1
    r_0 = spi_0.xfer2([1, 8 + adcnum_0 << 4, 0])
    adcout_0 = ((r_0[1] & 3) << 8) + r_0[2]
    return adcout_0

#this function can be used to find out the ADC value on ADC 1
def ReadADC1(adcnum_1): 
    if adcnum_1 > 7 or adcnum_1 < 0:
        return -1
    r_1 = spi_1.xfer2([1, 8 + adcnum_1 << 4, 0])
    adcout_1 = ((r_1[1] & 3) << 8) + r_1[2]
    return adcout_1
  
#this function converts a given value from the ADC and turns it into usable data
def ConvertADC(adcinput,unit):
	millivolts = adcinput*(3300.0/1024.0) #converts the ADC value to milivolts
	temp_c = ((millivolts - 100.0)/10)-40.0
	percent = (adcinput/1024.0)*100
	if unit == 'c' : #used for a temperature sensor to return Celsius 
		return temp_c
	elif unit == 'f' :  #used for a temperature sensor to return Fahrenheit  
		temp_f = (temp_c * 9.0 / 5.0) + 32
		return temp_f
	elif unit == 'mV':
		return millivolts
	elif unit == '%':
		return percent
	else:
		print "ConvertADC input error"
		return 0
	return 0
	
#returns a usable numerical value from the ADC
def PollSensor(sensor,unit,precision,samples):
	GPIO.output(pins['MST_Enable'], True)
	if PiPlanterFull == True:
		#Full PiPlanter
		sensors = {\
		'P_TMP0' : ConvertADC(ReadADC0(0),unit),\
		'P_MST0' : ConvertADC(ReadADC0(1),unit),\
		'P_TMP1' : ConvertADC(ReadADC0(2),unit),\
		'P_MST1' : ConvertADC(ReadADC0(3),unit),\
		'P_TMP2' : ConvertADC(ReadADC0(4),unit),\
		'P_MST2' : ConvertADC(ReadADC0(5),unit),\
		'P_TMP3' : ConvertADC(ReadADC0(6),unit),\
		'P_MST3' : ConvertADC(ReadADC0(7),unit),\
	
		'A_TMP0' : ConvertADC(ReadADC1(0),unit),\
		'A_LDR0' : ConvertADC(ReadADC1(1),unit),\
		'A_LDR1' : ConvertADC(ReadADC1(2),unit),\
		'A_MST0' : ConvertADC(ReadADC1(3),unit)}
	else:
		#Simple PiPlanter
		sensors = {\
		'P_MST0' : ConvertADC(ReadADC0(0),unit),\
		'P_MST1' : ConvertADC(ReadADC0(1),unit),\
		'A_TMP0' : ConvertADC(ReadADC0(2),unit),\
		'A_LDR0' : ConvertADC(ReadADC0(3),unit)}
	
	outputsum = 0
	for x in range(0,samples): #An averaging algorithm that creates a more precise reading
		outputsum = outputsum + sensors[sensor]
	output = round(outputsum/samples, precision)
	GPIO.output(pins['MST_Enable'], False)
	return output

#samples all sensors, outputs different formats of the data to be used in other places in the program
def SampleAllSensors(sensor_precision,sensor_samples,form,Full):	
	global MySQL_Tables
	if Full == True:
		#Full PiPlanter
		current_sensors = {\
		'P_TMP0' : PollSensor('P_TMP0' , 'f', sensor_precision, sensor_samples),\
		'P_MST0' : PollSensor('P_MST0' , '%', sensor_precision, sensor_samples),\
		'P_TMP1' : PollSensor('P_TMP1' , 'f', sensor_precision, sensor_samples),\
		'P_MST1' : PollSensor('P_MST1' , '%', sensor_precision, sensor_samples),\
		'P_TMP2' : PollSensor('P_TMP2' , 'f', sensor_precision, sensor_samples),\
		'P_MST2' : PollSensor('P_MST2' , '%', sensor_precision, sensor_samples),\
		'P_TMP3' : PollSensor('P_TMP3' , 'f', sensor_precision, sensor_samples),\
		'P_MST3' : PollSensor('P_MST3' , '%', sensor_precision, sensor_samples),\
		'A_TMP0' : PollSensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\
		'A_LDR0' : PollSensor('A_LDR0' , '%', sensor_precision, sensor_samples),\
		'A_LDR1' : PollSensor('A_LDR1' , '%', sensor_precision, sensor_samples),\
		'A_MST0' : PollSensor('A_MST0' , '%', sensor_precision, sensor_samples)}
	else:
		#Simple PiPlanter
		current_sensors = {\
		'P_MST0' : PollSensor('P_MST0' , '%', sensor_precision, sensor_samples),\
		'P_MST1' : PollSensor('P_MST1' , '%', sensor_precision, sensor_samples),\
		'A_TMP0' : PollSensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\
		'A_LDR0' : PollSensor('A_LDR0' , '%', sensor_precision, sensor_samples)}
	
	if form == 'MySQL':
		if Full == True:
			#Full PiPlanter
			cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Daily'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" )
			user.commit()
			cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Weekly'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" )
			user.commit()
			cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Monthly'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" )
			user.commit()
			ConsoleDebug('MySQL Tables Updated Full')
			output = "INSERT INTO " + MySQL_Tables['MySQLTable_Monthly'] + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")" 
		else:
			#Simple PiPlanter
			cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Daily'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")"  )
			user.commit()
			cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Weekly'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")"  )
			user.commit()
			cursor.execute("INSERT INTO " + MySQL_Tables['MySQLTable_Monthly'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")"  )
			user.commit()
			ConsoleDebug('MySQL Tables Updated Simple')
			output = "INSERT INTO " + MySQL_Tables['MySQLTable_Daily'] + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")"
			
	elif form == 'Console':
		if Full == True:
			#Full PiPlanter
			output = 'Debug Update:' + ' P_TMP0: ' + str(str(current_sensors['P_TMP0'])) + ',' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_TMP1: ' + str(str(current_sensors['P_TMP1'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ','+ ' P_TMP2: ' + str(str(current_sensors['P_TMP2'])) + ','+ ' P_MST2: ' + str(str(current_sensors['P_MST2'])) + ','+ ' P_TMP3: ' + str(str(current_sensors['P_TMP3'])) + ','+ ' P_MST3: ' + str(str(current_sensors['P_MST3'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) + ','+ ' A_LDR1: ' + str(str(current_sensors['A_LDR1'])) + ','+ ' A_MST0: ' + str(str(current_sensors['A_MST0'])) 	
		else:
			#Simple PiPlanter
			output = 'Debug Update:' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) 	
	elif form == 'Twitter':
		if Full == True:
			#Full PiPlanter
			output = 'Ambient LDR: ' + str(round(((current_sensors['A_LDR0'] + current_sensors['A_LDR1'])/2),1) ) + '%, ' + 'Ambient Tmp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Tmp: ' + str(round( (current_sensors['P_TMP0'] + current_sensors['P_TMP1'] + current_sensors['P_TMP2'] + current_sensors['P_TMP3'] )/4, sensor_precision-2)) + 'DF, ' + 'Ambient Mst: ' + str(round(current_sensors['A_MST0'],2)) + '%, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1']+ current_sensors['P_MST2']+ current_sensors['P_MST3'] )/4 ,1)) + '%'
		else:
			#Simple PiPlanter
			output = 'Ambient Light: ' + str(round((current_sensors['A_LDR0']),1)) + '%, ' + 'Ambient Temp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1'])/2 ,1)) + '%'
	else:
		print "ConvertADC input SampleAllSensors"
		return 0
	return output

#pumps a given amount of water from a given pump
def PumpWater(pump,volume):
	LPM = 4.00 #L per minute
	ontime = volume*(60/LPM)
	ConsoleDebug('PUMP ON')
	GPIO.output(pumps[pump],True)
	time.sleep(ontime)
	GPIO.output(pumps[pump],False)
	ConsoleDebug('PUMP OFF')
	output = 'Pumped ' + str(volume) + ' L Of Water Into Plants In ' + str(ontime) + ' Seconds'
	ConsoleDebug(output)
	return output

def Image(dir,cycle,high_quality):
	image = dir + str(cycle).zfill(4) + '.jpg'
	if high_quality == False:
		picture_command = 'raspistill -q 41 -o ' + image
	if high_quality == True:
		picture_command = 'raspistill -q 100 -o ' + image
	os.system(picture_command)
	ConsoleDebug('Image Captured, High Quality = ' + str(high_quality) + ', Image: ' + str(image))
	return image	

def RenderGraph(table,location):
	ConsoleDebug('Rendering Graph')
	rendercommand = 'php ' + str(os.getcwd()) + '/pChartRender_1_0_5.php ' + table + ' ' + location
	ConsoleDebug('Running Command: ' + rendercommand)
	proc = subprocess.Popen(rendercommand, shell=True, stdout=subprocess.PIPE)
	script_response = proc.stdout.read()
	ConsoleDebug('Output File: ' + script_response)
	ConsoleDebug('Rendering Complete')
	return script_response

def TryTweet(image, imagelocation, text):
	i = 0
	while i < 500:
		try:
			ConsoleDebug('Attempt [' + str(i) + '] To Tweet: ' + text + ' , image = ' + str(image)) 
			if image == True:
				output = api.update_with_media(imagelocation, text)
			if image == False:
				output = api.update_status(text)
			break
		except tweepy.error.TweepError as e:
			ConsoleDebug('Tweet Failed, Retrying')
			ConsoleDebug('Twitter Error: ' + str(e))
			i = i + 1
			time.sleep(15)
	
	ConsoleDebug('Tweet Sent After ' + str(i) + ' Attempts, Details: Actual Text [ ' + str(output.text) + '] URL: https://twitter.com/piplanter_bot/status/' + str(output.id) )

def RenderVideo(infolder,outfolder):
	outputfile = outfolder + str(datetime.now().strftime("%m_%d_%Y__%I_%M_%S%p")) + '_VIDEO.avi'
	ConsoleDebug('Attempting To Render: ' + outputfile)
	render_command = 'sudo mencoder mf://' + str(infolder) + '*.jpg -nosound -ovc lavc -lavcopts vcodec=mpeg4:aspect=16/9:vbitrate=8000000 -vf scale=1920:1080 -mf type=jpeg:fps=15 -o ' + outputfile
	os.system(render_command)
	ConsoleDebug('Render Complete, File: ' + outputfile)
	return outputfile


def FifteenMinutes():
	global cycle
	SampleAllSensors(1,1000,'MySQL',False)
	ConsoleDebug(SampleAllSensors(5,1000,'Console',False))
	image = Image(VisualLocation['CurrentImageDirectory'],cycle,False)
	tweet = SampleAllSensors(3,20,'Twitter',False) + " http://www.esologic.com/?page_id=1042"
	TryTweet(True,image,tweet)
	cycle = cycle + 1
	
def ThreeHours():
	graphlocation = RenderGraph(MySQL_Tables['MySQLTable_Daily'],VisualLocation['CurrentGraphDirectory'])
	tweet = 'Graph of day so far: Moisture % - Blue, Ambient Light % - Yellow, Temp DF - Red  http://www.esologic.com/?page_id=1042'
	TryTweet(True,graphlocation,tweet)
			
def Daily():
	graphlocation = RenderGraph(MySQL_Tables['MySQLTable_Daily'],VisualLocation['CurrentGraphDirectory'])
	MySQLTableSetup(False,'Daily',False)
	tweet = 'Graph of Previous 24 Hours: Moisture % - Blue, Ambient Light % - Yellow, Temp DF - Red  http://www.esologic.com/?page_id=1042'
	TryTweet(True,graphlocation,tweet)
	tweet2 = PumpWater('PUMP0',1.5)
	TryTweet(False,'',tweet2)
	RenderVideo(VisualLocation['CurrentImageDirectory'],VisualLocation['CurrentVideoDirectory'])

def Weekly():
	graphlocation = RenderGraph(MySQL_Tables['MySQLTable_Weekly'],VisualLocation['CurrentGraphDirectory'])
	tweet = 'Graph of Previous 3 Days: Moisture % - Blue, Ambient Light % - Yellow, Temp DF - Red  http://www.esologic.com/?page_id=1042'	
	TryTweet(True,graphlocation,tweet)
	MySQLTableSetup(False,'Daily',False)
	
if __name__ == '__main__':	
	global MySQL_Tables
	global VisualLocation
	
	consumer_key=""
	consumer_secret=""
	access_token=""
	access_token_secret=""
	auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
	auth.set_access_token(access_token, access_token_secret)
	api = tweepy.API(auth)
	
	GPIO.setmode(GPIO.BOARD)
	
	pins = {'MST_Enable' : 8} #assign names to GPIO pins
	for d in pins.itervalues():
		GPIO.setup(d,GPIO.OUT)
	
	pumps = {'PUMP0' : 7, 'PUMP1' : 11, 'PUMP2' : 13, 'PUMP3' : 16} #assign names to GPIO pins
	for k in pumps.itervalues():
		GPIO.setup(k,GPIO.OUT)
		
	#first ADC setup on SPI port 1
	spi_1 = spidev.SpiDev()
	spi_1.open(0, 1)

	#first ADC setup on SPI port 0
	spi_0 = spidev.SpiDev()
	spi_0.open(0, 0)
	
	PiPlanterFull = False
	
	user = MySQLdb.connect(host="localhost",user="root",passwd="")
	cursor = user.cursor()
		
	scheduler = Scheduler(standalone=True)
	scheduler.add_interval_job(FifteenMinutes, minutes = 15)
	scheduler.add_interval_job(ThreeHours, hours = 3)
	scheduler.add_interval_job(Daily, days=1)
	scheduler.add_interval_job(Weekly, days=3)
	
	try:
		FirstTimeSetup()
		PumpWater('PUMP0',3)
		scheduler.start()
		

	except (KeyboardInterrupt, SystemExit):
		pass

Note the distinct lack of comments. I will put out a much more polished version of the code when it’s done. Before I move onto things like a web UI etc, I would like to do a few more things with this standalone version. The above version renders videos into time lapses, I would like to be able to upload those videos somewhere, hopefully youtube. I would also like to be able to email the log file to the user daily, which should be easier than uploading videos to youtube.

The script that renders the MySQL data into a graph is the following, it on the other hand has not changed much at all since last year and is still the best method to render graphs like I want to:

<?php
 
/* Include all the classes */
include("/srv/www/lib/pChart/class/pData.class.php");
include("/srv/www/lib/pChart/class/pDraw.class.php");
include("/srv/www/lib/pChart/class/pImage.class.php");
 
$myData = new pData(); /* Create your dataset object */
 
$db = mysql_connect("localhost", "", ""); //location of server, db username, db pass
mysql_select_db("PiPlanter_Database", $db);
 
$Requete = "SELECT * FROM DailyTable07_11_2014__04_05_09PM";

$Result = mysql_query($Requete, $db);
 
/*This fetches the data from the mysql database, and adds it to pchart as points*/
while($row = mysql_fetch_array($Result))
{   
    $Time = $row["Time"];
    $myData->addPoints($Time,"Time");
     
    $P_MST0 = $row["P_MST0"];
    $myData->addPoints($P_MST0,"P_MST0");
    $P_MST1 = $row["P_MST1"];
    $myData->addPoints($P_MST1,"P_MST1");
     
	$A_TMP0 = $row["A_TMP0"];
    $myData->addPoints($A_TMP0,"A_TMP0"); 
	 
    $A_LDR0 = $row["A_LDR0"];
    $myData->addPoints($A_LDR0,"A_LDR0");
}

$myData-> setSerieOnAxis("P_MST0", 2);
$myData-> setSerieOnAxis("P_MST1", 2);
$myData-> setAxisName(2, "Relative Moisture [%]");
 
$myData-> setSerieOnAxis("A_TMP0", 0); //assigns the data to the first axis
$myData-> setAxisName(0, "Degrees [F]"); //adds the label to the first axis
 
$myData-> setSerieOnAxis("A_LDR0", 1);
$myData-> setAxisName(1, "Ambient Light Level [%]");
  
$myData->setAbscissa("Time"); //sets the time data set as the x axis label
 
$myData-> setSerieWeight("P_MST0",1); //draws the line thickness
$myData->setPalette("P_MST0",array("R"=>58,"G"=>95,"B"=>205,"Alpha"=>80)); //sets the line color
$myData-> setSerieWeight("P_MST1",1);
$myData->setPalette("P_MST1",array("R"=>39,"G"=>64,"B"=>139,"Alpha"=>80));

$myData-> setSerieWeight("A_LDR0",2);
$myData-> setSerieTicks("A_LDR0", 4);
 
$myData-> setSerieWeight("A_TMP0",2);
$myData-> setSerieTicks("A_TMP0", 4);
 
$myPicture = new pImage(4000,500,$myData); /* Create a pChart object and associate your dataset */
$myPicture->setFontProperties(array("FontName"=>"/srv/www/lib/pChart/fonts/pf_arma_five.ttf","FontSize"=>6)); /* Choose a nice font */
$myPicture->setGraphArea(130,40,3900,300); /* Define the boundaries of the graph area */
$myPicture->drawScale(array("LabelRotation"=>320)); /* Draw the scale, keep everything automatic */
 
$Settings = array("R"=>250, "G"=>250, "B"=>250, "Dash"=>1, "DashR"=>0, "DashG"=>0, "DashB"=>0);
 
/*The combination makes a cool looking graph*/
$myPicture->drawPlotChart(array("DisplayValues"=>TRUE));
$myPicture->drawLineChart();
$myPicture->drawLegend(30,320); //adds the legend
 
//$date-> date("d-M-Y:H:i:s");
 
//$myPicture->autoOutput(); /* Build the PNG file and send it to the web browser */ 
 
$myPicture->render("/home/pi/PiPlanter2/graphs/".date("d-M-Y_H:i:s").".png");
 
?>

Here are some photos of the current setup, it hasn’t changed much since last time:

Thank you very much for reading.

PiPlanter 2 | New Code Version / Temporary Setup

Hello! Here are some images of the new grow setup:

and here is the working version of the code:


import time
from time import sleep
from time import strftime

import tweepy
consumer_key=""
consumer_secret=""
access_token=""
access_token_secret=""
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

PiPlanter_Full = False

import logging
logging.basicConfig()
from apscheduler.scheduler import Scheduler

import os
import sys

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)

# Start of mysql setup
import MySQLdb
user = MySQLdb.connect(host="localhost",user="root",passwd="")
cursor = user.cursor()

MySQLdb_Name = 'PiPlanter' + strftime("_%m_%d_%Y_%I_%M_%S%p")
mysql_table_name = MySQLdb_Name + '_table'

mysql_create = 'CREATE DATABASE IF NOT EXISTS PiPlanter' 
mysql_grant = "GRANT ALL ON `" + MySQLdb_Name + "`.* TO 'piplanter'@'localhost' IDENTIFIED BY 'password'"
mysql_use = 'USE PiPlanter' 

if PiPlanter_Full == True:
	#Full PiPlanter
	mysql_table = "CREATE TABLE " + mysql_table_name + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_TMP0 VARCHAR(100),P_MST0 VARCHAR(100),P_TMP1 VARCHAR(100),P_MST1 VARCHAR(100),P_TMP2 VARCHAR(100),P_MST2 VARCHAR(100),P_TMP3 VARCHAR(100),P_MST3 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100),A_LDR1 VARCHAR(100),A_MST0 VARCHAR(100))"
else:
	#Simple PiPlanter
	mysql_table = "CREATE TABLE " + mysql_table_name + "(Sample_Number INT NOT NULL AUTO_INCREMENT PRIMARY KEY,Time VARCHAR(100),P_MST0 VARCHAR(100),P_MST1 VARCHAR(100),A_TMP0 VARCHAR(100),A_LDR0 VARCHAR(100))"

#A new database must be created each time the program runs
cursor.execute(mysql_create)
cursor.execute(mysql_grant)
cursor.execute(mysql_use)
cursor.execute(mysql_table)

pins = {'MST_Enable' : 8} #assign names to GPIO pins
for d in pins.itervalues():
	GPIO.setup(d,GPIO.OUT)

#first ADC setup on SPI port 1
import spidev
spi_1 = spidev.SpiDev()
spi_1.open(0, 1)

#first ADC setup on SPI port 0
import spidev
spi_0 = spidev.SpiDev()
spi_0.open(0, 0)

#this function can be used to find out the ADC value on ADC 0
def readadc_0(adcnum_0): 
    if adcnum_0 > 7 or adcnum_0 < 0:
        return -1
    r_0 = spi_0.xfer2([1, 8 + adcnum_0 << 4, 0])
    adcout_0 = ((r_0[1] & 3) << 8) + r_0[2]
    return adcout_0

#this function can be used to find out the ADC value on ADC 1
def readadc_1(adcnum_1): 
    if adcnum_1 > 7 or adcnum_1 < 0:
        return -1
    r_1 = spi_1.xfer2([1, 8 + adcnum_1 << 4, 0])
    adcout_1 = ((r_1[1] & 3) << 8) + r_1[2]
    return adcout_1
  
#this function converts a given value from the ADC and turns it into usable data
def convertadc(adcinput,unit):
	millivolts = adcinput*(3300.0/1024.0) #converts the ADC value to milivolts
	temp_c = ((millivolts - 100.0)/10)-40.0
	percent = (adcinput/1024.0)*100
	if unit == 'c' : #used for a temperature sensor to return Celsius 
		return temp_c
	elif unit == 'f' :  #used for a temperature sensor to return Fahrenheit  
		temp_f = (temp_c * 9.0 / 5.0) + 32
		return temp_f
	elif unit == 'mV':
		return millivolts
	elif unit == '%':
		return percent
	else:
		print "convertadc input error"
		return 0

#returns a usable numerical value from the ADC
def pollsensor(sensor,unit,precision,samples):
	GPIO.output(pins['MST_Enable'], True)
	if PiPlanter_Full == True:
		#Full PiPlanter
		sensors = {\
		'P_TMP0' : convertadc(readadc_0(0),unit),\
		'P_MST0' : convertadc(readadc_0(1),unit),\
		'P_TMP1' : convertadc(readadc_0(2),unit),\
		'P_MST1' : convertadc(readadc_0(3),unit),\
		'P_TMP2' : convertadc(readadc_0(4),unit),\
		'P_MST2' : convertadc(readadc_0(5),unit),\
		'P_TMP3' : convertadc(readadc_0(6),unit),\
		'P_MST3' : convertadc(readadc_0(7),unit),\
	
		'A_TMP0' : convertadc(readadc_1(0),unit),\
		'A_LDR0' : convertadc(readadc_1(1),unit),\
		'A_LDR1' : convertadc(readadc_1(2),unit),\
		'A_MST0' : convertadc(readadc_1(3),unit)}
	else:
		#Simple PiPlanter
		sensors = {\
		'P_MST0' : convertadc(readadc_0(0),unit),\
		'P_MST1' : convertadc(readadc_0(1),unit),\
		'A_TMP0' : convertadc(readadc_0(2),unit),\
		'A_LDR0' : convertadc(readadc_0(3),unit)}
	
	outputsum = 0
	for x in range(0,samples): #An averaging algorithm that creates a more precise reading
		outputsum = outputsum + sensors[sensor]
	output = round(outputsum/samples, precision)
	GPIO.output(pins['MST_Enable'], False)
	return output

#samples all sensors, outputs different formats of the data to be used in other places in the program
def sampleallsensors(sensor_precision,sensor_samples,form):	
	if PiPlanter_Full == True:
		#Full PiPlanter
		current_sensors = {\
		'P_TMP0' : pollsensor('P_TMP0' , 'f', sensor_precision, sensor_samples),\
		'P_MST0' : pollsensor('P_MST0' , '%', sensor_precision, sensor_samples),\
		'P_TMP1' : pollsensor('P_TMP1' , 'f', sensor_precision, sensor_samples),\
		'P_MST1' : pollsensor('P_MST1' , '%', sensor_precision, sensor_samples),\
		'P_TMP2' : pollsensor('P_TMP2' , 'f', sensor_precision, sensor_samples),\
		'P_MST2' : pollsensor('P_MST2' , '%', sensor_precision, sensor_samples),\
		'P_TMP3' : pollsensor('P_TMP3' , 'f', sensor_precision, sensor_samples),\
		'P_MST3' : pollsensor('P_MST3' , '%', sensor_precision, sensor_samples),\
		'A_TMP0' : pollsensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\
		'A_LDR0' : pollsensor('A_LDR0' , '%', sensor_precision, sensor_samples),\
		'A_LDR1' : pollsensor('A_LDR1' , '%', sensor_precision, sensor_samples),\
		'A_MST0' : pollsensor('A_MST0' , '%', sensor_precision, sensor_samples)}
	else:
		#Simple PiPlanter
		current_sensors = {\
		'P_MST0' : pollsensor('P_MST0' , '%', sensor_precision, sensor_samples),\
		'P_MST1' : pollsensor('P_MST1' , '%', sensor_precision, sensor_samples),\
		'A_TMP0' : pollsensor('A_TMP0' , 'f', sensor_precision, sensor_samples),\
		'A_LDR0' : pollsensor('A_LDR0' , '%', sensor_precision, sensor_samples)}
	
	if form == 'MySQL':
		if PiPlanter_Full == True:
			#Full PiPlanter
			output = "INSERT INTO " + mysql_table_name + "(Time, P_TMP0, P_MST0, P_TMP1, P_MST1, P_TMP2, P_MST2, P_TMP3, P_MST3, A_TMP0, A_LDR0, A_LDR1, A_MST0)" + " VALUES(NOW()" + "," + str(current_sensors['P_TMP0']) + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_TMP1']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['P_TMP2']) + "," + str(current_sensors['P_MST2']) + "," + str(current_sensors['P_TMP3']) + "," + str(current_sensors['P_MST3']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + "," + str(current_sensors['A_LDR1']) + "," + str(current_sensors['A_MST0']) + ")"  
		else:
			#Simple PiPlanter
			output = "INSERT INTO " + mysql_table_name + "(Time, P_MST0, P_MST1, A_TMP0, A_LDR0)" + " VALUES(NOW()" + "," + str(current_sensors['P_MST0']) + "," + str(current_sensors['P_MST1']) + "," + str(current_sensors['A_TMP0']) + "," + str(current_sensors['A_LDR0']) + ")"  
	elif form == 'Console':
		if PiPlanter_Full == True:
			#Full PiPlanter
			output = 'Debug Update:' + ' P_TMP0: ' + str(str(current_sensors['P_TMP0'])) + ',' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_TMP1: ' + str(str(current_sensors['P_TMP1'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ','+ ' P_TMP2: ' + str(str(current_sensors['P_TMP2'])) + ','+ ' P_MST2: ' + str(str(current_sensors['P_MST2'])) + ','+ ' P_TMP3: ' + str(str(current_sensors['P_TMP3'])) + ','+ ' P_MST3: ' + str(str(current_sensors['P_MST3'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) + ','+ ' A_LDR1: ' + str(str(current_sensors['A_LDR1'])) + ','+ ' A_MST0: ' + str(str(current_sensors['A_MST0'])) 	
		else:
			#Simple PiPlanter
			output = 'Debug Update:' + ' P_MST0: ' + str(str(current_sensors['P_MST0'])) + ',' + ' P_MST1: ' + str(str(current_sensors['P_MST1'])) + ',' + ' A_TMP0: ' + str(str(current_sensors['A_TMP0'])) + ',' + ' A_LDR0: ' + str(str(current_sensors['A_LDR0'])) 	
	elif form == 'Twitter':
		if PiPlanter_Full == True:
			#Full PiPlanter
			output = 'Ambient LDR: ' + str(round(((current_sensors['A_LDR0'] + current_sensors['A_LDR1'])/2),1) ) + '%, ' + 'Ambient Tmp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Tmp: ' + str(round( (current_sensors['P_TMP0'] + current_sensors['P_TMP1'] + current_sensors['P_TMP2'] + current_sensors['P_TMP3'] )/4, sensor_precision-2)) + 'DF, ' + 'Ambient Mst: ' + str(round(current_sensors['A_MST0'],2)) + '%, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1']+ current_sensors['P_MST2']+ current_sensors['P_MST3'] )/4 ,1)) + '%'
		else:
			#Simple PiPlanter
			output = 'Ambient Light: ' + str(round((current_sensors['A_LDR0']),1)) + '%, ' + 'Ambient Temp: ' + str(round(current_sensors['A_TMP0'],1)) + 'DF, ' + 'Average Plant Mst: ' + str(round( (current_sensors['P_MST0']+current_sensors['P_MST1'])/2 ,1)) + '%'
	else:
		print "convertadc input sampleallsensors"
		return 0
	return output
	
pumps = {'PUMP0' : 7, 'PUMP1' : 11, 'PUMP2' : 13, 'PUMP3' : 16} #assign names to GPIO pins
for k in pumps.itervalues():
	GPIO.setup(k,GPIO.OUT)

#pumps a given amount of water from a given pump
def pumpwater(pump,volume):
	LPM = 4.00 #L per minute
	ontime = volume*(60/LPM)
	GPIO.output(pumps[pump],True)
	time.sleep(ontime)
	GPIO.output(pumps[pump],False)
	output = 'Pumped ' + str(volume) + ' L  of water into plants in ' + str(ontime) + ' seconds.'
	return output

#Sets up proper directories for folders and images
def visualssetup(time):
	#checks if directories above exist
	if not os.path.exists(str(os.getcwd()) + '/videos/'):
		os.makedirs(str(os.getcwd()) + '/videos/')

	if not os.path.exists(str(os.getcwd()) + '/videos/dailys/'):
		os.makedirs(str(os.getcwd()) + '/videos/dailys/')
	
	if not os.path.exists(str(os.getcwd()) + '/images/'):
		os.makedirs(str(os.getcwd()) + '/images/')
	
	if not os.path.exists(str(os.getcwd()) + '/images/dailys/'):
		os.makedirs(str(os.getcwd()) + '/images/dailys/')

	global current_dailypicdir
	current_dailypicdir = str(os.getcwd()) + '/images/dailys/' + str(time) + '/'
	os.makedirs(current_dailypicdir)

	global current_dailyvideodir
	current_dailyvideodir = str(os.getcwd()) + '/videos/dailys/' + str(time) + '/'
	os.makedirs(current_dailyvideodir)

def picture(dir,cycle):
	image = dir  + str(cycle).zfill(4) + '.jpg'
	picture_command = 'raspistill -o ' + dir  + str(cycle).zfill(4) + '.jpg'
	os.system(picture_command)
	return image

def rendervideo():
	time  = strftime("%m-%d-%Y_%I-%M-%S%p")
	global current_videodir
	scheduler.shutdown(shutdown_threadpool=False)
	render_command = 'sudo mencoder -nosound mf://' + current_dailypicdir + '*.jpg -mf w=2592:h=1944:type=jpg:fps=15 -ovc lavc -lavcopts vcodec=mpeg4:vbitrate=2160000:mbd=2:keyint=132:v4mv:vqmin=3:lumi_mask=0.07:dark_mask=0.2:mpeg_quant:scplx_mask=0.1:tcplx_mask=0.1:naq -o ' + current_dailyvideodir + 'output.avi'
	os.system(render_command)

def daily():
	visualssetup(strftime("%m-%d-%Y_%I-%M-%S%p"))
	api.update_status(pumpwater('PUMP0',3))
	global cycle
	cycle = 0 


def hourly():
	cursor.execute(sampleallsensors(3,20,'MySQL'))
	user.commit()

	print sampleallsensors(3,20,'Console')
	
	pumpwater('PUMP0', .5)
	
	global current_dailypicdir
	api.update_status(sampleallsensors(3,20,'Twitter') + " http://www.esologic.com/?page_id=1042")
	picture(current_dailypicdir,cycle)
	
	#pumpwater('PUMP0', 1)
	
	global cycle 
 	cycle = cycle + 1 
	
if __name__ == '__main__':
	
	daily()
	hourly()

	scheduler = Scheduler(standalone=True)
	scheduler.add_interval_job(hourly, hours=1)
	scheduler.add_interval_job(daily, days=1)
    
	try:
		scheduler.start()
	except (KeyboardInterrupt, SystemExit):
		pass

I’ll do a much more thorough post when the project is further along. For those playing along at home, you can see that I’ve totally re-written the code for this new version. So far, it has much less functionality but much more stability and flexibility.

My Raspberry Pi Networked Media/NAS Server Setup

I have come to a very good place with my media server setup using my Raspberry Pi. The whole thing is accessible using the network, over a wide range of devices which is ideal for me and the other people living in my house.

If you don’t need to see any of the installation, the following software is running on the server: SambaMinidlna, Deluge & Deluge-Web and NTFS-3G.

The combination of all of this software allows me to access my media and files on pretty much any device I would want to. This is a great combination of software to run on your Pi if you’re not doing anything with it.

So let’s begin with the install!


I’m using the latest build of Raspian, the download and install of that is pretty simple, instructions here.

Unless you can hold your media on the SD card your Pi’s OS is installed on, you’ll need some kind of external storage. In my case, I’m using a 3TB external HDD.

We’ll need to mount this drive, I’ve already written a post on how to do this, check that out here.


Now we should involve Samba. Again, it’s a pretty simple install.

sudo apt-get install samba samba-common-bin

Once it installs you should already see signs of it working. If you’re on windows, make sure network sharing is on, and browse to the “network” folder. It should show up as “RASPBERRYPI” as seen in this image:

The only real tricky part is configuring it. Here is an untouched version of the samba config file. On your pi, it is found at:

/etc/samba/smb.conf

You can edit it like you would any config file. This is the configuration following is the configuration I am running on my Pi, if you want a configuration that will work with no problems without any modifications, replace the existing /etc/samba/smb.conf with this version.

There are only a few differences between the standard version and the version I’m using. The biggest one being the actual “Share” being used seen here:

[HDD_Share]
   comment = External HDD Share
   path = /media/USBHDD
   browseable = yes
   read only = no
   valid users = YOURUSER #IF ON A BASIC RASPBERRY PI, US THE USER "pi"
   only guest = no
   create mask = 0777
   directory mask = 0777
   public = no

Basically, this shares the external HDD you just mounted to the network. You can insert this share anywhere in your document and it will work. Once you update your config file, you have to add your user to samba. If you haven’t done anything but install raspbian, your username on the pi should still be “pi” so the following should do the following:

sudo smbpasswd -a pi

Enter your new samba password twice and then you’re good to go after restarting samba.

sudo /etc/init.d/samba restart

In windows you can go to “network” option in My Computer and see your share.

If you’re like me though, you’re going to want multiple users for multiple shares. Samba only can only have users that are members of the system, so in order to add a new user to samba, you have to add a user to the Raspberry Pi. For example, let’s add the user ‘testuser’:

sudo mkdir /home/testuser/
sudo useradd -d /home/testuser -s /bin/false -r testuser
sudo passwd testuser
sudo chown testuser /home/testuser
sudo chgrp users /home/testuser
sudo smbpasswd -a testuser
sudo /etc/init.d/samba restart

I have written a bash script to do this automatically.

On the share level, the line of valid users = should be set to whichever user you want to be able to use the share.

That’s pretty much it for Samba. I’m probably going to do a guide on accessing your shares via SSH tunneling when the need for me to do so arises. I’ll link that here if it ever happens. Now on to minidlna.


MiniDLNA is a very lightweight DLNA server. DLNA is a protocal specifically for streaming media to a huge array of devices from computers to iOS devices or gaming consoles or smart TV’s. I have spent quite a bit of time using minidlna, and have reached a configuration that works extremely well with the raspberry pi. The install is very easy, much like samba, it’s the configuration that is tricky.

sudo apt-get install minidlna

The config file i’m using is found here. There Pi actually handles the streaming really really well, and there only a few things you need to change in the config file, and they are mostly aesthetic. The following lines are examples of media locations for each type of file.

# If you want to restrict a media_dir to a specific content type, you can
# prepend the directory name with a letter representing the type (A, P or V),
# followed by a comma, as so:
#   * "A" for audio    (eg. media_dir=A,/var/lib/minidlna/music)
#   * "P" for pictures (eg. media_dir=P,/var/lib/minidlna/pictures)
#   * "V" for video    (eg. media_dir=V,/var/lib/minidlna/videos)
#
# WARNING: After changing this option, you need to rebuild the database. Either
#          run minidlna with the '-R' option, or delete the 'files.db' file
#          from the db_dir directory (see below).
#          On Debian, you can run, as root, 'service minidlna force-reload' instead.

media_dir=A,/media/USBHDD/Documents/Media/Audio
media_dir=P,/media/USBHDD/Documents/Media/Images/Photos
media_dir=V,/media/USBHDD/Documents/Media/Video
media_dir=/media/USBHDD/Documents/Media/

And changing this line will change the name of the DLNA server on the network:

# Name that the DLNA server presents to clients.
friendly_name=Raspberry Pi DLNA

That’s pretty much all there is to it.

You can stream the files all over the place, the following images show it being used on my kindle and another computer. I stream files to my xbox 360 all the time.

The last major component of this media server is Deluge, let’s proceed with that install.


Deluge is a torrent client for linux servers. The coolest part is it has a very good web based GUI for control. The install isn’t too straightforward, but there is no real specific configuration. The following commands will get things up and running.

sudo apt-get install python-software-properties
sudo add-apt-repository 'deb http://ppa.launchpad.net/deluge-team/ppa/ubuntu precise main'
sudo apt-get update
sudo apt-get install -t precise deluge-common deluged deluge-web deluge-console
sudo apt-get install -t precise libtorrent-rasterbar6 python-libtorrent
sudo apt-get install screen
screen -d -m deluge-web

And there you go! You can now torrent files directly into your Samba shares which is hugely useful and more secure, the following is me doing just that:


The last thing that needs to be done is run a few commands at boot, particularly mount the HDD and start deluge-web. The easiest way to do this crontab. First run:

sudo crontab -e

Then add the following two lines:

sudo mount -t ntfs-3g /dev/sda1/ /media/USBHDD/
screen -d -m deluge-web

So it looks like this:

And everything will start working upon boot!


Thank you very much for reading. If you have any questions, please leave a comment.

PiPlanter 2 | Another Plant Update

They’re getting bigger!

Smart Speaker | Modifications and Repair of Lepai LP-A6FM/USB

When trying to charge a cellphone via the USB port on the amplifier, I blew a power resistor and the 5v regulator on the amp. The following images show the repair process:

Smart Speaker | Battery Powered Working Prototype and USB charging

Here’s a video:

Not much further explanation needed for this post. The design process for delivering power to all components of the system is complete. The topology is pretty simple:

12v Battery -> switch on positive rail -> 5v Switching Regulator & 12v rail -> Amp & 5v Linear Regulator -> Arduino

If you have any questions, please let me know.

 

Smart Speaker | Full Working Prototype

Here is a video of the whole thing working:

The whole system works! If you look at this post, which basically shows the whole thing can be battery powered as well. The following photos show the way the cable is run out the back of the housing. Both sets of the 3 wires are tied together and then to the output of the digital pot:

Contrary to what I thought, the 10k ohm digital pot can change the volume just fine! To be safe though, I ordered an SPI digital Pot that can do 50k ohm resistance.

Here is the new working version of the code as well:

#include <SPI.h> //for using the digital pot

const int slaveSelectPin = 10; //for SPI, from example code

//Shift Register Setup, taken from www.bildr.og
int SER_Pin = 6;   //pin 14 on the 75HC595
int RCLK_Pin = 7;  //pin 12 on the 75HC595
int SRCLK_Pin = 8; //pin 11 on the 75HC595
#define number_of_74hc595s 4 //How many of the shift registers - change this
#define numOfRegisterPins number_of_74hc595s * 8
boolean registers[numOfRegisterPins];

int IR_rangefinder = 0; //The pin attached to the rangefinder

int detect_led = 2;
int setlevelMode0_led = 3;

int serialDebug_switch = 4; //Throughout the program, this switch enables or disables all serial output


int check_val = 3; //The arbitrary position above the sensor that indicates a "check" - the position that must be held in order to change the volume
int cycle_delay = 30; //a universal delay time for refreshing the check functions

void setup(){
  
  //shift register setup
  pinMode(SER_Pin, OUTPUT);
  pinMode(RCLK_Pin, OUTPUT);
  pinMode(SRCLK_Pin, OUTPUT);
  clearRegisters();
  writeRegisters();

  //spi setup
  pinMode (slaveSelectPin, OUTPUT);
  SPI.begin(); 

  //general LED's
  pinMode(detect_led, OUTPUT);
  pinMode(setlevelMode0_led, OUTPUT);
  
  pinMode(serialDebug_switch, INPUT);
  
  //Serial setup
  Serial.begin(9600);  
}

//integers to remember values off of the IR sensor. 
int prelevel_0 = 0;
int prelevel_1 = 0;
int prelevel_2 = 0;
int prelevel_3 = 0;
int prelevel_4 = 0;
int prelevel_5 = 0;
int prelevel_6 = 0;
int prelevel_7 = 0;
int prelevel_8 = 0;
int prelevel_9 = 0;

int pre_positions[10] = {prelevel_0, prelevel_1, prelevel_2, prelevel_3, prelevel_4, prelevel_5, prelevel_6, prelevel_7, prelevel_8, prelevel_9}; // an array holding the positions

void loop(){
  
  /*
  
  The system works by sampling the sensor a number of times. It puts these values into an array. 
  Once all sample have been made, each value is compared to a like value. If every && evaluates to true, this means whatever object above the sensor has been there for the "cycle_delay" * the number of comparisions made.
  It will confirm that the user wants their hand the be there and it was not acciential. 
  
  Think of the following loop as the ambient mode, the user can't adjust the volume from here, but they can enter the mode where they can adjust the volume.
  It has much less precision by design. 
  
  */
  
  for(int i = 0; i <= 9; i = i + 1){
    writebargraph(0,map(analogRead(IR_rangefinder),20,600,0,9));
    pre_positions[i] = map(analogRead(IR_rangefinder),20,600,0,9);
    if(pre_positions[i] == check_val){
      if(digitalRead(serialDebug_switch) == HIGH){
        Serial.println("Check Detected");
      }
      digitalWrite(detect_led, HIGH);
    }
    else {
     digitalWrite(detect_led, LOW);  
    }
    delay(cycle_delay);
  } 
  
  if(digitalRead(serialDebug_switch) == HIGH){
    for(int i = 0; i <= 9; i = i + 1){
      Serial.print(pre_positions[i]);
      Serial.print(",");
    }
  }
  
  //Once it has been determined that the object above the sensor has been there for a long enough time, the system enters the secondary level set mode. 
  if (pre_positions[0] == check_val && pre_positions[1] == check_val && pre_positions[2] == check_val && pre_positions[3] == check_val && pre_positions[4] == check_val && pre_positions[5] == check_val && pre_positions[6] == check_val && pre_positions[7] == check_val && pre_positions[8] == check_val && pre_positions[9] == check_val  ){
    if(digitalRead(serialDebug_switch) == HIGH){
      Serial.print(" - Pre Level Set");
      Serial.println("");
    }
    delay(500);
    setlevel(); 
    delay(500);
  }
  else {
    if(digitalRead(serialDebug_switch) == HIGH){
      Serial.println(" - No Set");
    }
  }

}


void setlevel(){
  
  /*
  
  Very similar to the above topology. This version is much more precise, and has 30 comparison samples as opposed to 10. 
  It also writes to the digital potentiometer as well at the the same time as the bar graph. 
  
  */
  
  int level0 = 0;
  int level1 = 0;
  int level2 = 0;
  int level3 = 0;
  int level4 = 0;
  int level5 = 0;
  int level6 = 0;
  int level7 = 0;
  int level8 = 0;
  int level9 = 0;
  int level10 = 0;
  int level11 = 0;
  int level12 = 0;
  int level13 = 0;
  int level14 = 0;
  int level15 = 0;
  int level16 = 0;
  int level17 = 0;
  int level18 = 0;
  int level19 = 0;
  int level20 = 0;
  int level21 = 0;
  int level22 = 0;
  int level23 = 0;
  int level24 = 0;
  int level25 = 0;
  int level26 = 0;
  int level27 = 0;
  int level28 = 0;
  int level29 = 0;
  
  int positions[30] = { level0, level1, level2, level3, level4, level5, level6, level7, level8, level9, level10, level11, level12, level13, level14, level15, level16, level17, level18, level19, level20, level21, level22, level23, level24, level25, level26, level27, level28, level29};
  
  digitalWrite(setlevelMode0_led, LOW);
    
  boolean seeking = true;
  
  while(seeking == true){
    for(int i = 0; i <= 29; i = i + 1){
      writebargraph(1,map(analogRead(IR_rangefinder),20,600,0,19));
      digitalpot(map(analogRead(IR_rangefinder),20,600,0,255)); //Writes to digital pot
      positions[i] = map(analogRead(IR_rangefinder),20,600,0,19);
      if(digitalRead(serialDebug_switch) == HIGH){
        Serial.print(positions[i]);
        Serial.print(",");
      }
      delay(cycle_delay);
    }  
  
  
  //Instead of comparing to a predetermined value, it compares it to the first value sampled. If this if statement is true, it means the users hand has stopped moving, indicating they would like to set the volume at that position.
  if (positions[0] == positions[0] && positions[1] == positions[0] && positions[2] == positions[0] && positions[3] == positions[0] && positions[4] == positions[0] && positions[5] == positions[0] && positions[6] == positions[0] && positions[7] == positions[0] && positions[8] == positions[0] && positions[9] == positions[0] && positions[10] == positions[0] && positions[11] == positions[0] && positions[12] == positions[0] && positions[13] == positions[0] && positions[14] == positions[0] && positions[15] == positions[0]  ){
    if(digitalRead(serialDebug_switch) == HIGH){
     Serial.print(" - Level Set");
    }
    digitalWrite(setlevelMode0_led, HIGH);
    seeking = false; //Stops the loop and holds the last value on the bar graph and digital pot. 
   }
   else {
     if(digitalRead(serialDebug_switch) == HIGH){
       Serial.print(" - No Set");
     }
     digitalWrite(setlevelMode0_led, LOW);
   }
   if(digitalRead(serialDebug_switch) == HIGH){
     Serial.println("");
   }
  }
}

//This function will write to the shift registers -> the bar graph. It will write all of the values below the one specified HIGH and all above LOW. It also allows multiple sets of bar graphs
void writebargraph(int set, int led){
  if(set == 0){
    for(int i = 0; i <= 9; i = i + 1){
      if(i <= led){
                
        setRegisterPin(i, HIGH);
        writeRegisters();
      }
      else if(i > led){
        
        setRegisterPin(i, LOW);
        writeRegisters();
      } 
     }
   }
  if(set == 1){
    for(int k = 10; k <= 29; k = k + 1){
      if(k <= 10 + led){
        setRegisterPin(k, HIGH);
        writeRegisters();
      }
      else if(k > 10 + led){
        setRegisterPin(k, LOW);
        writeRegisters();
      } 
    }
  }
}

//A very simple function to write values to the Digital Pot
void digitalpot(int value){
  digitalWrite(slaveSelectPin,LOW);
  SPI.transfer(0); // enables the chip
  SPI.transfer(value);
  digitalWrite(slaveSelectPin,HIGH);
}


//SHIFT REGISTER FUNCTIONS. 
//set all register pins to LOW
void clearRegisters(){
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
     registers[i] = LOW;
  }
} 
//Set and display registers
//Only call AFTER all values are set how you would like (slow otherwise)
void writeRegisters(){
  digitalWrite(RCLK_Pin, LOW);
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
    digitalWrite(SRCLK_Pin, LOW);
    int val = registers[i];
    digitalWrite(SER_Pin, val);
    digitalWrite(SRCLK_Pin, HIGH);
  }
  digitalWrite(RCLK_Pin, HIGH);
}
//set an individual pin HIGH or LOW
void setRegisterPin(int index, int value){
  registers[index] = value;
}

The only difference between this one and the last version I posted was the height of the check value. I made it further away from the sensor.

Before the code is “finished” I would like to add a few things. The first being an averaging loop in the raw input ; instead of just using variations of map(analogRead(IR_rangefinder),20,600,0,9); each time, I’d like to maybe write my own function that is more general for assigning comparison. The downside to this however is that it may slow things down and the top priority with this project is keeping it fast and accurate.

Smart Speaker | Amp Teardown and Potentiometer Problem

Here are images of the teardown:

A couple of things to note: I over heated the pads when removing the gain pot and lifted a trace by accident. Instead of soldering directly into the lug hole, I just tied directly to the resistor that is in series with the pot signal.

I also am also not going to be able to use the digital pot I have been working with so far. Note the image that shows the pot with a resistance of 50k, and the one I’ve been working with is 10k.

I’m going to order a pair of these, and many of these to try and solve the bluetooth static problem.

Smart Speaker | Power System Proof Of Concept

Here’s a video:

This is very simple. Basically this whole thing will work like:

12v Battery -> Amp (5v Regulator) -> Arduino & Bluetooth & Cellphone Charger

I may have to add a separate linear regulator in order to get less noise on the bluetooth as seen in the video.

 

 

Smart Speaker | Proximity Potentiometer Working Prototype

A direct follow up to this post: http://www.esologic.com/?p=984


First, here’s a video:

I got the digital potentiometer working! It was very simple using the SPI library built into the Arduino software. All you have to do is address the chip and then write it a value between 0 and 255 to set the resistance value. Here is the code for this version, I’ve cleaned it up a bit since last time:


#include <SPI.h> //for using the digital pot

const int slaveSelectPin = 10; //for SPI, from example code

//Shift Register Setup, taken from www.bildr.og
int SER_Pin = 7;   //pin 14 on the 75HC595
int RCLK_Pin = 8;  //pin 12 on the 75HC595
int SRCLK_Pin = 9; //pin 11 on the 75HC595
#define number_of_74hc595s 4 //How many of the shift registers - change this
#define numOfRegisterPins number_of_74hc595s * 8
boolean registers[numOfRegisterPins];

int IR_rangefinder = 0; //The pin attached to the rangefinder

int detect_led = 2;
int setlevelMode0_led = 3;
int setlevelMode1_led = 4;
int seeking_led = 6;

int check_val = 8; //The arbitrary position above the sensor that indicates a "check" - the position that must be held in order to change the volume
int cycle_delay = 30; //a universal delay time for refreshing the check functions

void setup(){
  
  //shift register setup
  pinMode(SER_Pin, OUTPUT);
  pinMode(RCLK_Pin, OUTPUT);
  pinMode(SRCLK_Pin, OUTPUT);
  clearRegisters();
  writeRegisters();

  //spi setup
  pinMode (slaveSelectPin, OUTPUT);
  SPI.begin(); 

  //general LED's
  pinMode(detect_led, OUTPUT);
  pinMode(setlevelMode0_led, OUTPUT);
  pinMode(setlevelMode1_led, OUTPUT);
  pinMode(seeking_led, OUTPUT);
  
  //Serial setup
  Serial.begin(9600);  
}

//integers to remember values off of the IR sensor. 
int prelevel_0 = 0;
int prelevel_1 = 0;
int prelevel_2 = 0;
int prelevel_3 = 0;
int prelevel_4 = 0;
int prelevel_5 = 0;
int prelevel_6 = 0;
int prelevel_7 = 0;
int prelevel_8 = 0;
int prelevel_9 = 0;

int pre_positions[10] = {prelevel_0, prelevel_1, prelevel_2, prelevel_3, prelevel_4, prelevel_5, prelevel_6, prelevel_7, prelevel_8, prelevel_9}; // an array holding the positions

void loop(){
  
  /*
  
  The system works by sampling the sensor a number of times. It puts these values into an array. 
  Once all sample have been made, each value is compared to a like value. If every && evaluates to true, this means whatever object above the sensor has been there for the "cycle_delay" * the number of comparisions made.
  It will confirm that the user wants their hand the be there and it was not acciential. 
  
  Think of the following loop as the ambient mode, the user can't adjust the volume from here, but they can enter the mode where they can adjust the volume.
  It has much less precision by design. 
  
  */
  
  for(int i = 0; i <= 9; i = i + 1){
    writebargraph(0,map(analogRead(IR_rangefinder),20,600,0,9));
    pre_positions[i] = map(analogRead(IR_rangefinder),20,600,0,9);
    if(pre_positions[i] == check_val){
      Serial.println("Check Detected");
      digitalWrite(detect_led, HIGH);
    }
    else {
     digitalWrite(detect_led, LOW);  
    }
    delay(cycle_delay);
  } 
  for(int i = 0; i <= 9; i = i + 1){
    Serial.print(pre_positions[i]);
    Serial.print(",");
  } 
  
  //Once it has been determined that the object above the sensor has been there for a long enough time, the system enters the secondary level set mode. 
  if (pre_positions[0] == check_val && pre_positions[1] == check_val && pre_positions[2] == check_val && pre_positions[3] == check_val && pre_positions[4] == check_val && pre_positions[5] == check_val && pre_positions[6] == check_val && pre_positions[7] == check_val && pre_positions[8] == check_val && pre_positions[9] == check_val  ){
    Serial.print(" - Pre Level Set");
    Serial.println("");
    delay(500);
    setlevel(); 
    delay(500);
  }
  else {
    Serial.println(" - No Set");
  }

}


void setlevel(){
  
  /*
  
  Very similar to the above topology. This version is much more precise, and has 30 comparison samples as opposed to 10. 
  It also writes to the digital potentiometer as well at the the same time as the bar graph. 
  
  */
  
  int level0 = 0;
  int level1 = 0;
  int level2 = 0;
  int level3 = 0;
  int level4 = 0;
  int level5 = 0;
  int level6 = 0;
  int level7 = 0;
  int level8 = 0;
  int level9 = 0;
  int level10 = 0;
  int level11 = 0;
  int level12 = 0;
  int level13 = 0;
  int level14 = 0;
  int level15 = 0;
  int level16 = 0;
  int level17 = 0;
  int level18 = 0;
  int level19 = 0;
  int level20 = 0;
  int level21 = 0;
  int level22 = 0;
  int level23 = 0;
  int level24 = 0;
  int level25 = 0;
  int level26 = 0;
  int level27 = 0;
  int level28 = 0;
  int level29 = 0;
  
  int positions[30] = { level0, level1, level2, level3, level4, level5, level6, level7, level8, level9, level10, level11, level12, level13, level14, level15, level16, level17, level18, level19, level20, level21, level22, level23, level24, level25, level26, level27, level28, level29};
  
  digitalWrite(setlevelMode1_led, LOW);
  digitalWrite(setlevelMode2_led, LOW);  
  
  boolean seeking = true;
  
  while(seeking == true){
    for(int i = 0; i <= 29; i = i + 1){
      writebargraph(1,map(analogRead(IR_rangefinder),20,600,0,19));
      digitalpot(map(analogRead(IR_rangefinder),20,600,0,255)); //Writes to digital pot
      positions[i] = map(analogRead(IR_rangefinder),20,600,0,19);
      Serial.print(positions[i]);
      Serial.print(",");
      delay(cycle_delay);
    }  
  
  
  //Instead of comparing to a predetermined value, it compares it to the first value sampled. If this if statement is true, it means the users hand has stopped moving, indicating they would like to set the volume at that position.
  if (positions[0] == positions[0] && positions[1] == positions[0] && positions[2] == positions[0] && positions[3] == positions[0] && positions[4] == positions[0] && positions[5] == positions[0] && positions[6] == positions[0] && positions[7] == positions[0] && positions[8] == positions[0] && positions[9] == positions[0] && positions[10] == positions[0] && positions[11] == positions[0] && positions[12] == positions[0] && positions[13] == positions[0] && positions[14] == positions[0] && positions[15] == positions[0]  ){
     Serial.print(" - Level Set");
     digitalWrite(setlevelMode1_led, HIGH);
     seeking = false; //Stops the loop and holds the last value on the bar graph and digital pot. 
   }
   else {
     Serial.print(" - No Set");
     digitalWrite(setlevelMode1_led, LOW);
   }
   Serial.println("");
  }
}

//This function will write to the shift registers -> the bar graph. It will write all of the values below the one specified HIGH and all above LOW. It also allows multiple sets of bar graphs
void writebargraph(int set, int led){
  if(set == 0){
    for(int i = 0; i <= 9; i = i + 1){
      if(i <= led){
                
        setRegisterPin(i, HIGH);
        writeRegisters();
      }
      else if(i > led){
        
        setRegisterPin(i, LOW);
        writeRegisters();
      } 
     }
   }
  if(set == 1){
    for(int k = 10; k <= 29; k = k + 1){
      if(k <= 10 + led){
        setRegisterPin(k, HIGH);
        writeRegisters();
      }
      else if(k > 10 + led){
        setRegisterPin(k, LOW);
        writeRegisters();
      } 
    }
  }
}

//A very simple function to write values to the Digital Pot
void digitalpot(int value){
  digitalWrite(slaveSelectPin,LOW);
  SPI.transfer(0); // enables the chip
  SPI.transfer(value);
  digitalWrite(slaveSelectPin,HIGH);
}


//SHIFT REGISTER FUNCTIONS. 
//set all register pins to LOW
void clearRegisters(){
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
     registers[i] = LOW;
  }
} 
//Set and display registers
//Only call AFTER all values are set how you would like (slow otherwise)
void writeRegisters(){
  digitalWrite(RCLK_Pin, LOW);
  for(int i = numOfRegisterPins - 1; i >=  0; i--){
    digitalWrite(SRCLK_Pin, LOW);
    int val = registers[i];
    digitalWrite(SER_Pin, val);
    digitalWrite(SRCLK_Pin, HIGH);
  }
  digitalWrite(RCLK_Pin, HIGH);
}
//set an individual pin HIGH or LOW
void setRegisterPin(int index, int value){
  registers[index] = value;
}

If you have questions about the code please leave it in the comments.